***** CONFIDENTIAL PREDECISIONAL DOCUMENT *****

SUMMARY SCORESHEET FOR COMPUTING PROJECTED HRS SCORE

SITE NAME: Chemonics Laboratory Division McKe	nzie	
CITY, COUNTY: Phoenix, Maricopa		
EPA ID #: <u>AZD057907883</u> EVALUAT	OR: Debi Mal	one
PROGRAM ACCOUNT #: 0376	TE: August 2	0, 1993
Lat/Long: 33 27' 15"/ 112 04' 45" T/R	/s: (A 01-03) 09 CBB
THIS SCORESHEET IS FOR A: PA S	si <u>x</u>	LSI
SIRe PA Redo Other (Specify)		
RCRA STATUS (check all that apply):		
X GeneratorSmall Quantity Generator TSDF	Transpo	rter
Not listed in RCRA Database as of (date	of printout)	07/1993
STATE SUPERFUND STATUS:		
BEP (date) X	WQARF (da	te)
No State Superfund Status (date)		
	S Pathway	S ² Pathway
Groundwater Migration Pathway Score (Sgw)	0.24	0.058
Surface Water Migration Pathway Score (S.w)	*	*
Soil Exposure Pathway Score (S.)	0.61	0.372
Air Migration Pathway Score (S.)	3.21	10.30
$S_{gw}^2 + S_{sw}^2 + S_s^2 + S_s^2$		
		10.73
$(S_{gw}^2 + S_{sw}^2 + S_s^2 + S_a^2)/4$	xxxxxxxxx	2.683
$\frac{1}{ (S_{gw}^2 + S_{sw}^2 + S_s^2 + S_s^2)/4}$	XXXXXXXXXX XXXXXXXXXX	1.640
* Pathways not assigned a score (explain): *1 No surface water migration *		

GROUNDWATER MIGRATION PATHWAY SCORESHEET

Factor Categories and Factors

		Maximum	Projected		Date
	Likelihood of Release	Value	Score	Rationale	Qual.
1.	Observed Release	550	0	1	<u>H</u>
2.	Potential to Release 2a. Containment	10	10	2	<u>H</u>
	2b. Net Precipitation 2c. Depth to Aquifer 2d. Travel Time 2e. Potential to Release	10 5 35	1 3 25	3 4 5	<u>н</u> н
	[(Lines 2a x (2b+2c+2d)]	500	290		
3.	Likelihood of Release (Higher of lines 1 or 2e)	550	290		
	Waste Characteristics				
5.	Toxicity/Mobility Hazardous Waste Quantity Waste Characteristics (lines	a a	10	<u>6</u> <u>7</u>	<u>H</u> <u>D</u>
	4 x 5, then use Table 2-7) Targets	100	3	8	<u>D</u>
	Nearest Well Population 8a. Level I Concentrations	50 b	9	9	<u>н</u> н
	8b. Level II Concentrations 8c. Potential Contamination 8d. Population (lines 8a+8b+8c	b b	0 8.8 8.8	11 12	H E
	Resources Wellhead Protection Area	5 20	5	13	H H
11.		b	22.8		
	<u>Likelihood of Release</u>				
12.	Aquifer Score [(Lines 3 x 6 x 11)/82,500] ^C	100	0.24		
Grou	undwater Migration Pathway Scor	<u>·e</u>			
13.	Pathway Score (Sgw), (highest value from line 12 for all aquifers evaluated)	100	0.24	_	

a Maximum value applies to waste characteristics category.
b Maximum value not applicable
c Do not round to the nearest integer.

Aquifer Evaluated All

d Use additional tables

GROUNDWATER PATHWAY CALCULATIONS

8. Population

Actual Contamination

Potential

Contamination

Distance (Miles)	Total Number of Wells Within Distance Ring	Total Population Served by Wells Within Distance	Distance-Weighted Population Values "Other Than Karst" (Table 3-12) Ring (A)
0 to 1/4	0	0	. 0
>1/4 to 1/2	0	0	0
>1/2 to 1	1	87	17
>1 to 2	1	23	3
>2 to 3	2	570	68
>3 to 4	0	0	0
		Sum (A)	88
Potential Contamin			
	10	8.8	

^{*} For drinking water wells that draw from a karst aquifer, see the Distance-Weighted Population Values for "Karst" in Table 3-12.

Aquifer Evaluated ALL

SOIL EXPOSURE PATHWAY SCORESHEET

Factor Categories and Factors

RESIDENT	POPULATION	THREAT
----------	------------	--------

/rhrs

RESI	DENT POPULATION THREAT				
	Likelihood of Exposure	Maximum Value	Projected Score	Rationale	Data Qual.
1.	Likelihood of Exposure	550	_550	_1_	E
	Waste Characteristics				
2.	Toxicity	а	10,000	2	H.
3.	Hazardous Waste Quantity	. a	10	3	ME
4-	Waste Characteristics	100		4	E
	Targets				
5.	Resident Individual	50		_5_	_H
0.	Resident Population 6a. Level I Concentrations				
	6b. Level II Concentrations	Ь		4	_H_
	6c. Resident Population	ь		_6	
	(lines 6a+6b)	b			
7.	Workers	15			
8.	Resources	5	3		71
9.	. Terrestrial Sensitive				
	Environments	c	0	9.	
10.	Targets (lines 5+6c+7+8+9)	b	5		
	Resident Population Threat Sci	ore			
11.		ore			
11.	Resident Population Score		49500		
11.		ore b	49500		
	Resident Population Score (lines 1 x 4 x 10) Y POPULATION THREAT		49500	·	
NEARB	Resident Population Score (lines 1 x 4 x 10) Y POPULATION THREAT Likelihood of Exposure		49500		
NEARB	Resident Population Score (lines 1 x 4 x 10) Y POPULATION THREAT Likelihood of Exposure Attractiveness/Accessibility		<u>49500</u> 5	10	Н
NEARB	Resident Population Score (lines 1 x 4 x 10) Y POPULATION THREAT Likelihood of Exposure Attractiveness/Accessibility Area of Contamination	Ь	<u>49500</u> <u>5</u> <u>20</u>		<u>H</u>
NEARB	Resident Population Score (lines 1 x 4 x 10) Y POPULATION THREAT Likelihood of Exposure Attractiveness/Accessibility	b 100	49500 5 20 5	10	H
NEARB	Resident Population Score (lines 1 x 4 x 10) Y POPULATION THREAT Likelihood of Exposure Attractiveness/Accessibility Area of Contamination	100 100	49500 5 20 5	10	H +1 -H
12. 13. 14.	Resident Population Score (lines 1 x 4 x 10) Y POPULATION THREAT Likelihood of Exposure Attractiveness/Accessibility Area of Contamination Likelihood of Exposure Waste Characteristics	100 100 500	5 20 5	10	H +1 +1
NEARB	Resident Population Score (lines 1 x 4 x 10) Y POPULATION THREAT Likelihood of Exposure Attractiveness/Accessibility Area of Contamination Likelihood of Exposure Vaste Characteristics Toxicity	100 100 500	5 20 5	10	H +1 +1
12. 13. 14.	Resident Population Score (lines 1 x 4 x 10) Y POPULATION THREAT Likelihood of Exposure Attractiveness/Accessibility Area of Contamination Likelihood of Exposure Waste Characteristics	100 100 500	5 20 5		H +1 +1
12. 13. 14.	Resident Population Score (lines 1 x 4 x 10) Y POPULATION THREAT Likelihood of Exposure Attractiveness/Accessibility Area of Contamination Likelihood of Exposure Vaste Characteristics Toxicity Hazardous Vaste Quantity	100 100 500	5 20 5		H +1 H
12. 13. 14. 15. 16. 17.	Resident Population Score (lines 1 x 4 x 10) Y POPULATION THREAT Likelihood of Exposure Attractiveness/Accessibility Area of Contamination Likelihood of Exposure Vaste Characteristics Toxicity Hazardous Waste Quantity Waste Characteristics Targets Nearby Individual	100 100 500	5 20 5	10 11 12	H +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1
NEARB 12. 13. 14. 15. 16. 17.	Resident Population Score (lines 1 x 4 x 10) Y POPULATION THREAT Likelihood of Exposure Attractiveness/Accessibility Area of Contamination Likelihood of Exposure Waste Characteristics Toxicity Hazardous Waste Quantity Waste Characteristics Targets Nearby Individual Population Within 1-Mile **Target Start Star	100 100 500 a a 100	5 20 5	10 11 12	H +1 H
12. 13. 14. 15. 16. 17.	Resident Population Score (lines 1 x 4 x 10) Y POPULATION THREAT Likelihood of Exposure Attractiveness/Accessibility Area of Contamination Likelihood of Exposure Vaste Characteristics Toxicity Hazardous Waste Quantity Waste Characteristics Targets Nearby Individual	100 100 500	5 20 5 10,000 10 18		H + H + H = H = H = H = H = H = H = H =

24-Jan-1991

SOIL EXPOSURE CALCULATIONS

20. Nearby Population Targets

		(P)
		Distance-
		Veighted
	Total Population	Population
Distance	Within Distance	Values
(miles)	Ring	(Table 5-10)
0 to 1/4	992	0.13
>1/4 to 1/2	993	1 7
>1/2 to 1	11,836	102
	Sum (P)	122

Nearby Population Threat factor value $\frac{\text{Sum }(P)}{10} = 12.2$

SOIL EXPOSURE PATHWAY SCORESHEET (CONTINUED)

Factor Categories and Factors

	Nearby Threat	Population Score	Maximum Value	Projected Score	Rationale Qual.
21.		Population Threat 14 x 17 x 20)	b	1188	
SOIL	EXPOSURE	PATHWAY SCORE			

22. Soil Exposure Pathway Score
(Ss), [lines (11+21)/82,500
subject to a maximum of 100] 100

b Maximum value not applicable.

d Do not round to the nearest integer.

a Maximum value applies to waste characteristics category.

c No specific maximum value applies to this factor. However, pathway score based solely on sensitive environments is limited to a maximum of 60.

e Use additional tables.

AIR HIGRATION PATHWAY SCORESHEET

Pactor Categories and Factors

Ī	Likelihood of Release	Maximum Value	Projected Score	Rationale	Data Qual.
1. 2.	Observed Release Potential to Release 2a. Gas Potential 2b. Particulate Potential 2c. Potential to Release	550 500 500	340	1 2	E
3.	(higher of lines 2a and 2b) Likelihood of Release (higher of Lines 1 or 2c)	500	3.70		— F
	Waste Characteristics				
4. 5. 6.	Toxicity/Mobility Hazardous Waste Quantity Waste Characteristics	a a	200	<u>4</u> <u>5</u>	11
	(lines 4 x 5, then use Table 2-7)	100	4		<u>H</u>
	Targets				
7.	Nearest Individual	50	20	6.	_+
	8a. Level I Concentrations 8b. Level II Concentrations 8c. Potential Contamination 8d. Population (8a.8b.8a)	e b	93.2	7	H
9.	8d. Population (8a+8b+8c) Resources	b 5	93.2	8	+
10.	Sensitive Environments ^e 10a. Actual Contamination 10b. Potential Contaminatio 10c. Sensitive Environments			9	<u>+1</u>
11.	(lines 10a+10b) Targets (Lines 7+8d+9+10c)	c b	7/3.2		
ir Pa	athway Migration Score				
12.	Air Pathway Score (Sa) [(lines 3 x 6 x 11)/82,500]	100	3.21 d		

a Maximum value applies to waste characteristics category.

b Maximum value not applicable.

c No specific maximum value applies to factor. However, pathway score based solely on sensitive environments is limited to a maximum of 60.

d Do not round to nearest integer.

e Use additional tables.

AIR PATHWAY CALCULATIONS

2. Potential to Release

Gas Potential to Release

	Source Type (Name)	Gas Containment Factor Value (Table 6-3)	Gas Source Type Factor Value (Table 6-4)	Gas Migration Potential Factor Value (Table 6-7)	Sum	 Gas Source Value
		(A)	(B)	(C)	(B+C)	A x (B+C)
1.	cyanide	10	28	6	34	1 340
2.						
3.						
4.				1		
				to Release Facto ghest Gas Source		

Particulate Potential to Release

	Source Type (Name)	Particulate Containment Factor Value (Table 6-9)	Particulate Source Type Factor Value (Table 6-4)	Particulate Migration Potential Factor Value (Figure 6-2)	Sum	 Particulate Source Value
		(A)	(B)	(C)	(B+C)	A x (B+C)
1. <u>U</u>	idane.	10	22	17	39	390
3						
4						
			ate Potential t the highest Par			390

AIR PATHWAY CALCULATIONS (CONTINUED)

8. Potential Contamination

Distance		(A)
(miles)	Total Population Within Distance Ring	Distance-Weighted Population Value (Table 6-17)
On site (0)	60	53
>0 to 0.25	992	131
>0.25 to 0.5	993	28
>0.5 to 1	11836	261
>1 to 2	33701	266
>2 to 3	30777	120
>3 to 4	40,000	73
		lank in Town
	Sum of (A) =	932
Air Potential Con	tamination Factor Value = S	of (A)
es a STATION CONTRACTOR	A STANDARD COLUMN STANDARD	93.2
10. Sensitive Env	vironments	
. Actual Contain	mination	
	(A)	
Wetland or	Sensitive	(B) j
Type of	Environment	Wetland
Sensitive Environment		Rating Value (Table 6-18) (A + B)
· · · · · · · · · · · · · · · · · · ·		
Ac	tual Contamination Factor Va	alue (cum (A . P))

AIR PATHWAY CALCULATIONS (CONTINUED)

Potential Contamination

Vetland or Type of Sensitive Environment	(A) Sensitive Environment Rating Value (Table 4-23)	(B) Wetland* Rating Value (Table 6-18)	Distance (miles)	(DV) Distance Weights (Table 6-15)	DV x (A + B)
	***********	The second section is a second			on above the second of the sec
			Sum D	W x (A + B)	
Potential Con Sensitive Env		r Value = <u>Sum D</u>			

* Only assign a Wetland Rating Value once for each wetland within a distance category.

/rhrs

RATIONALE FOR HRS FOR CHEMONICS LABORATORY DIVISION MCKENZIE Groundwater Pathway An observed release is not documented nor is one projected 1. due to no analytical data to concur with a release attributable to this site. The assigned value of 10 for Containment from HRS Table 3-2. 2. 3. The assigned value for Net Precipitation is 1 from HRS Figure 3-2. The depth to groundwater at the site is calculated from the 4. bottom of the drywells (25 feet bgs) to the top of the aquifer at approximately 80 feet. The assigned value from HRS Table 3-5 is 3. The assigned hydraulic conductivity from HRS Table 3-6 is 5. 104 cm/sec. HRS Table 3-7 gives us a Travel Time of 25. The toxicity/mobility is assigned for Toxaphene; 6. (1,000) (0.01) gives us a value of 10. 7. The Hazardous Waste Quantity defaults to 10. The Waste Characteristics value from HRS Table 2-7 is 3. The Nearest Well is between 1/2 and 1 mile from the site; the assigned value from HRS Table 3-11 is 9. There are no Level I Concentrations. 10. 11. There are no Level II Concentrations. 12. The Potential Contamination value from the worksheet is 8.8. This varies greatly from the score calculated in the PA. The entire metropolitan population was used to attribute people to the counted wells. This rationale calculated the actual people per pumping well that is within the 4 mile radius of the site. The aguifer is used as a resource for irrigation; thus the 13. value assigned per HRS Section 3.3.3 is 5. 14. There are no Wellhead Protection Areas in Region 9. Therefore the value assigned is 0. This pathway does not score like it did in the PA due to inaccurate geographic and hydrologic data being used in the PA. The PA was also done when the old HRS Criteria was used; the new HRS doesn't allow the pathway to now score.

SOIL PATHWAY CHEMONICS 1. There is analytical soil data for chlorinated pesticide contamination at the site. 2. The toxicity value is 10,000 for lindane, one of the pesticides detected at the site. 3. The Hazardous Waste Quantity defaults to 10. Waste Characteristics assigned from HRS Table 2-7 is 18. 4. 5. There is no Resident Individual as defined by HRS. There is no Resident Population affected by Level I or Level 6. II contamination concentrations. There are approximately 60 persons working at the site; the 7. assigned value from HRS Table 5-4 is 5. There is no affected Resources as identified by HRS Section 8. 5.1.3.4. There are no Terrestrially Sensitive Environments. 9. 10. The Attractiveness/Accessibility value assigned is 5 since the site is fenced. The area of pesticide contamination is estimated to be 11. 75,000 square feet; so the assigned value from HRS Table 5-7 is 20. 12. The Liklihood of Exposure value from HRS Table 5-8 is 5. 13. The Nearest Individual per HRS Table 5-9 is 0-1/4 mile so the assigned value is 1. 14. The population within 1 mile using Target Population calculation makes the Threat Factor 12.2. AIR PATHWAY Since solvents were used on site, the Gas Potential to Release is calculated to give a value of 340. Lindane was used to calculate Particulate Potential To 2. Release; the value is 390.

CHEMONICS AIR PATHWAY CONTINUED

- 3. The Liklihood of Release is the Particulate Potential Value of 390.
- 4. The Toxicity value for Lindane is 10,000. The mobility factor is 0.2 from Figure 6-3 of the HRS. The assigned value is then 200.
- 5. The Hazardous Waste Quantity value defaults to 10.
- 6. The nearest individual is approximately 1/8 mile; Table 6-16 gives the assigned value of 20.
- 7. The population is calculated from Table 6-17 and the assigned factor value is 93.2.
- 8. There are no Resources as defined by HRS.
- 9. There are no sensitive environments as defined by HRS.

Due to the pesticide contamination obviously present at this site and that this site will not score under current HRS criteria; this site would be an ideal candidate for the SACM Process.